ЛЭП – это проводная или кабельная линия передачи электроэнергии. Воздушные и кабельные линии электропередачи 110 кв расшифровка

Над беспроводным вариантом передачи электроэнергии еще в самом начале 20-го века работал выдающийся изобретатель сербского происхождения Никола Тесла, но даже спустя столетие подобные разработки масштабного промышленного применения не получили. Основным способом доставки энергии потребителю по-прежнему остаются кабельные и воздушные линии электропередач.

Линии электропередач: назначение и виды

Линия электропередачи - едва ли не самый основной компонент электрических сетей, входящий в систему энергетического оборудования и устройств, главное предназначение которой - передача электрической энергии от установок, ее производящих (электростанций), преобразующих и распределяющих (электроподстанций) к потребителям. В общих случаях так называют все электрические линии, находящиеся вне пределов перечисленных электросооружений.

Историческая справка: первая ЛЭП (постоянного тока, напряжением 2 кВ) была сооружена в Германии по проекту французского ученого Ф. Депре в 1882 году. Она имела протяженность около 57 км и соединяла города Мюнхен и Мисбах.

По способу монтажа и обустройства разделяют кабельные и воздушные линии электропередач. В последние годы, особенно для энергоснабжения мегаполисов, возводят газоизолированные линии. Их применяют для передачи высоких мощностей в условиях очень плотной застройки для экономии площади, занимаемой ЛЭП, и обеспечения экологических норм и требований.

Кабельные линии находят применение там, где обустройство воздушных затруднительно или невозможно по техническим или эстетическим параметрам. Из-за сравнительной дешевизны, лучшей ремонтопригодности (в среднем время ликвидации аварии или неисправности в 12 раз меньше) и высокой пропускной способности наиболее востребованы воздушные линии электропередачи.

Определение. Общая классификация

Электрическая воздушная линия (ВЛЭП) - совокупность устройств, расположенных на открытом воздухе и предназначенных для передачи электроэнергии. В состав воздушных линий входят провода, траверсы с изоляторами, опоры. В качестве последних в некоторых случаях могут выступать конструктивные элементы мостов, путепроводов, зданий и прочих сооружений. При возведении и эксплуатации воздушных линий электропередач и сетей также используется различная вспомогательная арматура (грозозащита, заземляющие устройства), дополнительное и сопутствующее оборудование (высокочастотной и волоконно-оптической связи, промежуточного отбора мощности) и элементы маркировки комплектующих.

По роду передаваемой энергии воздушные линии подразделяют на сети переменного и постоянного тока. Последние, ввиду определенных технических трудностей и неэффективности, широкого распространения не получили и применяются лишь для энергоснабжения специализированных потребителей: приводов постоянного тока, электролизных цехов, городских контактных сетей (электрифицированного транспорта).

По номинальному напряжению воздушные линии электропередачи принято делить на два больших класса:

  1. Низковольтные, напряжением до 1 кВ. Государственными стандартами определяются четыре номинальных значения: 40, 220, 380 и 660 В.
  2. Высоковольтные, свыше 1 кВ. Здесь определены двенадцать номинальных значений: среднего напряжения - от 3 до 35 кВ, высокого - от 110 до 220 кВ, сверхвысокого - 330, 500 и 700 кВ и ультравысокого - свыше 1 МВ.

Примечание: все приведенные цифры соответствуют межфазному (линейному) напряжению трехфазной сети (шести- и двенадцатифазные системы серьезного промышленного распространения не имеют).

От ГОЭЛРО до ЕЭС

Следующая классификация описывает инфраструктуру и функциональное назначение воздушных линий электропередач.

По охвату территории сети подразделяют:

  • на сверхдальние (напряжение свыше 500 кВ), предназначенные для связи региональных энергетических систем;
  • магистральные (220, 330 кВ), служащие для их формирования (соединения электростанций с распределительными сооружениями);
  • распределительные (35 - 150 кВ), основное предназначение которых поставка электроэнергии крупным потребителям (объектам промышленности, аграрного комплекса и крупным населенным пунктам);
  • подводящие или питающие (ниже 20 кВ), обеспечивающие энергоснабжение остальных потребителей (городских, промышленных и сельскохозяйственных).

Воздушные линии электропередач имеют важное значение в формировании Единой энергетической системы страны, основа которой была заложена еще при реализации плана ГОЭЛРО (Государственная электрификация России) молодой Советской республики около столетия назад для обеспечения высокого уровня надежности энергоснабжения, его отказоустойчивости.

По топологической структуре и конфигурации ВЛЭП могут быть разомкнутыми (радиальными), замкнутыми, с резервным (содержащим два и более источника) питанием.

По числу параллельных цепей, проходящих по одной трассе, линии разделяют на одно-, двух- и многоцепные (под цепью понимается полный комплект проводов трехфазной сети). Если цепи имеют различные номинальные значения напряжения, то такую ВЛЭП называют комбинированной. Цепи могут крепиться как на одной опоре, так и на разных. Естественно, в первом случае масса, габариты и сложность опоры возрастают, но сокращается охранная зона линии, что в густонаселенной местности иногда играет решающую роль при составлении проекта.

Дополнительно используют разделение воздушных линий и сетей, исходя из исполнения нейтралей (изолированная, глухозаземленная и т. д.) и режиму работы (штатный, аварийный, монтажный).

Охранная зона

Для обеспечения сохранности, нормального функционирования, удобства обслуживания и ремонта ВЛЭП, а также для предотвращения травматизма и гибели людей, вдоль трасс вводятся зоны с особым режимом использования. Таким образом, охранная зона воздушных линий электропередачи - это земельный участок и воздушное пространство над ним, заключенное между вертикальными плоскостями, стоящими на определенном расстоянии от крайних проводов. В охранных зонах запрещена работа грузоподъемной техники, строительство зданий и сооружений. Минимальное расстояние от воздушной линии электропередачи определяется номинальным напряжением.

При пересечении несудоходных водоемов, охранной зоне воздушных линий электропередач соответствуют аналогичные расстояния, а для судоходных ее размер увеличивается до 100 метров. Кроме того, руководящими указаниями определяются наименьшие удаления проводов от поверхности земли, производственных и жилых построек, деревьев. Запрещена прокладка высоковольтных трасс над крышами зданий (кроме производственных, в особо оговоренных случаях), над территориями детских учреждений, стадионов, культурно-развлекательных и торговых площадок.

Опоры - конструкции, выполненные из дерева, железобетона, металла или композитных материалов для обеспечения необходимого расстояние проводов и грозозащитных тросов от земной поверхности. Самый бюджетный вариант - деревянные стойки, используемые очень широко в прошлом веке при строительстве высоковольтных линий, - постепенно выводятся из эксплуатации, а новые почти не устанавливаются. К основным элементам опор воздушных линий электропередачи относятся:

  • фундаментные основания,
  • стойки,
  • подкосы,
  • растяжки.

Конструкции разделяют на анкерные и промежуточные. Первые устанавливают в начале и конце линии, при изменении направления трассы. Особый класс анкерных опор - переходные, используемые на пересечениях ВЛЭП с водными артериями, путепроводами и подобными объектами. Это самые массивные и высоконагруженные конструкции. В сложных случаях их высота может достигать 300 метров!

Прочность и габариты конструкции промежуточных опор, используемых только для прямых участков трасс, не столь внушительны. В зависимости от назначения, их разделяют на транспозиционные (служащие для смены месторасположения фазных проводов), перекрестные, ответвительные, пониженные и повышенные. С 1976 года все опоры были строго унифицированы, но в наши дни наблюдается процесс отхода от массового применения типовых изделий. Каждую трассу стараются максимально адаптировать к условиям рельефа, ландшафта и климата.

Главное требование к проводам ВЛЭП - высокая механическая прочность. Делятся на два класса - неизолированные и изолированные. Могут быть выполнены в виде многопроволочных и однопроволочных проводников. Последние, состоящие из одной медной или стальной жилы, применяются только для строительства трасс низкого напряжения.

Многопроволочные провода для воздушных линий электропередач могут быть выполнены из стали, сплавов на основе алюминия или чистого металла, меди (последние, вследствие высокой стоимости, на протяженных трассах, практически не используются). Наиболее распространены проводники, изготовленные из алюминия (в обозначении присутствует буква "А") или сталеалюминиевых сплавов (марка АС или АСУ (усиленные)). Конструктивно представляют собой скрученные стальные проволоки, поверх которых навиты алюминиевые жилы. Стальные, для защиты от коррозии, оцинковывают.

Выбор сечения производят в соответствии с передаваемой мощностью допустимого падения напряжения, механических характеристик. Стандартные сечения проводов, производимых в России, - 6, 10, 16, 25, 35, 50, 70, 95, 120 и 240. Представление о минимальных сечениях проводов, применяемых для сооружения воздушных линий, можно получить из таблицы, приведенной ниже.

Ответвления выполняют чаще изолированными проводами (марки АПР, АВТ). Изделия имеют атмосферостойкое изоляционное покрытие и стальной несущий тросик. Соединения проводов в пролетах монтируют на участках, не подверженных механическим воздействиям. Сращивают их обжатием (с применением соответствующих приспособлений и материалов) либо свариванием (термитными шашками или специальным аппаратом).

В последние годы при возведении воздушных линий все чаще используют самонесущие изолированные провода. Для ВЛЭП низкого напряжения промышленностью выпускаются марки СИП-1, -2 и -4, а для линий 10-35 кВ - СИП-3.

На трассах напряжением свыше 330 кВ, для предотвращения коронных разрядов, практикуется применение расщепленной фазы - один провод большого сечения заменяется несколькими меньшими, скрепленными между собой. С ростом номинального напряжения их число увеличивается от 2 до 8.

Линейная арматура

К арматуре ВЛЭП относятся траверсы, изоляторы, зажимы и подвесы, планки и распорки, крепежные приспособления (скобы, хомуты, метизы).

Основная функция траверс - крепление проводов таким образом, чтобы обеспечить необходимое расстояние между разноименными фазами. Изделия представляют собой специальные металлоконструкции, выполненные из уголков, полосы, штырей и т. д. с окрашенной или оцинкованной поверхностью. Существует около двух десятков типоразмеров и видов траверс, весом от 10 до 50 кг (обозначаются как ТМ-1...ТМ22).

Изоляторы применяют для надежного и безопасного крепления проводов. Их подразделяют по группам, в зависимости от материала изготовления (фарфор, закаленное стекло, полимеры), функционального назначения (опорные, проходные, вводные) и способов крепления к траверсам (штыревые, стержневые и подвесные). Изоляторы изготавливают под определенное напряжение, которое обязательно указывают в буквенно-цифровой маркировке. Главные требования, предъявляемые к этому типу арматуры при устройстве воздушных линий электропередач, - механическая и электрическая прочность, теплостойкость.

Для уменьшения вибрации линии и предотвращения изломов проволок проводов применяют специальные гасящие устройства или демпфирующие петли.

Технические параметры и защита

При проектировании и монтаже воздушных линий электропередач учитывают следующие важнейшие характеристики:

  • Длину промежуточного пролета (дистанцию между осями соседних стоек).
  • Расстояние удаления друг от друга фазных проводников и самого нижнего - от поверхности земли (габарит линии).
  • Длину гирлянды изоляторов в соответствии с номинальным напряжением.
  • Полную высоту опор.

Получить представление об основных параметрах воздушных линий электропередач 10 кВ и выше можно из таблицы.

Для предупреждения повреждений воздушных линий и профилактики аварийных отключений во время грозы над фазными проводами пускают стальной или сталеалюминиевый тросовый молниеотвод, сечением 50-70 мм 2 , заземленный на опорах. Нередко его выполняют полым, и это пространство используют для организации высокочастотных каналов связи.

Защиту от возникающих при ударах молнии перенапряжений обеспечивают вентильные разрядники. В случае возникновения на проводах индуцированного грозового импульса, происходит пробой искрового промежутка, в результате которого разряд перетекает на опору, имеющую потенциал земли, не повреждая изоляции. Сопротивление опоры уменьшают, используя специальные заземляющие устройства.

Подготовка и монтаж

Технологический процесс сооружения ВЛЭП состоит из подготовительных, строительно-монтажных и пусковых работ. К первым относят закупку оборудования и материалов, железобетонных и металлических конструкций, изучение проекта, подготовку трассы и пикетаж, разработку ППЭР (плана производства электромонтажных работ).

Строительные работы включают в себя рытье котлованов, установку и сборку опор, распределение по трассе арматуры и комплектов заземления. Непосредственно монтаж воздушных линий электропередач начинают с раскатки проводов и тросов, выполнения соединений. Затем следует подъем их на опоры, натяжка, визирование стрел провеса (наибольшего расстояния между проводом и прямой линией, соединяющей точки его крепления к опорам). В завершение увязывают провода и тросы на изоляторах.

Кроме общих мер безопасности, работы на воздушных линиях электропередач подразумевают соблюдение следующих правил:

  • Прекращение всех работ при приближении грозового фронта.
  • Обеспечение защиты персонала от воздействия наведенных в проводах электрических потенциалов (закорачивание и заземление).
  • Запрещение работы в ночное время (кроме монтажа пересечений с путепроводами, железными дорогами), гололеде, тумане, при скорости ветра более 15 м/с.

Перед вводом в эксплуатацию проверяют стрелу провеса и габариты линии, измеряют падение напряжения в соединителях, сопротивление заземляющих устройств.

Обслуживание и ремонт

По регламентам работ все воздушные линии свыше 1 кВ каждые полгода подлежат осмотру обслуживающим персоналом, инженерно-техническими работниками - 1 раз в год, на предмет следующих неисправностей:

  • набросов посторонних предметов на провода;
  • обрывов или перегорания отдельных фазовых проводов, нарушение регулировки стрел провеса (не должны превышать проектные более чем на 5 %);
  • повреждения или перекрытия изоляторов, гирлянд, разрядников;
  • разрушений опор;
  • нарушений в охранной зоне (складирование посторонних предметов, нахождение негабаритной техники, сужение ширины просеки, вследствие разрастания деревьев и кустарников).

Внеочередные осмотры трассы проводят при образовании наледи, в период разлива рек, природных и техногенных пожаров, а также после автоматического отключения. Осмотры с подъемом на опоры проводят по мере надобности (минимум 1 раз в 6 лет).

В случае обнаружения нарушения целостности части проволок провода (до 17 % общего сечения), поврежденный участок восстанавливают наложением ремонтной муфты или бандажа. При больших повреждениях провод разрезают и вновь соединяют специальным зажимом.

В ходе текущего ремонта воздушной трассы выправляют покосившиеся опоры и подкосы, проверяют затяжку всех резьбовых соединений, восстанавливают защитный покрасочный слой на металлоконструкциях, нумерацию, знаки и плакаты. Замеряют сопротивление заземляющих устройств.

Капитальный ремонт воздушных линий электропередач подразумевает выполнение всех работ текущего ремонта. Помимо этого, осуществляется полная перетяжка проводов с замером переходного сопротивления соединительных муфт и проведением послеремонтных испытательных мероприятий.

Воздушные линии (ВЛ) служат для передачи электроэнергии по проводам, проложенным на открытом воздухе и закрепленным на специальных опорах или кронштейнах инженерных сооружений с помощью изоляторов и арматуры. Основными конструктивными элементами ВЛ являются провода, защитные тросы, опоры, изоляторы и линейная арматура. В городских условиях ВЛ получили наибольшее распространение на окраинах, а также в районах застройки до пяти этажей. Элементы ВЛ должны обладать достаточной механической прочностью, поэтому при их проектировании, кроме электрических, делают и механические расчеты для определения не только материала и сечения проводов, но и типа изоляторов и опор, расстояния между проводами и опорами и т. д.

В зависимости от назначения и места установки различают следующие виды опор:

промежуточные, предназначенные для поддержания проводов на прямых участках линий. Расстояние между опорами (пролеты) составляет 35-45 м для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Крепление проводов здесь производится с помощью штыревых изоляторов (не наглухо);

анкерные, имеющие более жесткую и прочную конструкцию, чтобы воспринимать продольные усилия от разности тяжения по проводам и поддерживать (в случае обрыва) все оставшиеся в анкерном пролете провода. Эти опоры устанавливаются также на прямых участках трассы (с пролетом около 250 м для напряжения 6-10 кВ) и на пересечениях с различными сооружениями. Крепление проводов на анкерных опорах производится наглухо к подвесным или штыревым изоляторам;

концевые, устанавливаемые в начале и в конце линии. Они являются разновидностью анкерных опор и должны выдерживать постоянно действующее одностороннее тяжение проводов;

угловые, устанавливаемые в местах изменения направления трассы. Эти опоры укрепляются подкосами или металлическими оттяжками;

специальные или переходные, устанавливаемые в местах пересечений ВЛ с сооружениями или препятствиями (реками, железными дорогами и т. п.). Они отличаются от других опор данной линии по высоте или конструкции.

Для изготовления опор применяют дерево, металл или железобетон.

Деревянные опоры в зависимости от конструкции могут быть:

одинарными;

А-образными, состоящими из двух стоек, сходящихся у вершины и расходящихся у основания;

трехногими, состоящими из трех сходящихся к вершине и расходящихся у основания стоек;

П-образными, состоящими из двух стоек, соединенных вверху горизонтальной траверсой;

АП-образными, состоящими из двух А-образных опор, соединенных горизонтальной траверсой;

составными, состоящими из стойки и приставки (пасынка), присоединяемой к ней бандажом из стальной проволоки.

Для увеличения срока службы деревянные опоры пропитывают антисептиками, значительно замедляющими процесс гниения древесины. В эксплуатации антисептирование проводится путем наложения антисептического бандажа в местах, подверженных гниению, с промазыванием антисептической пастой всех трещин, мест сопряжений и врубок.

Металлические опоры изготавливают из труб или профильной стали, железобетонные - в виде полых круглых или прямоугольных стоек с уменьшающимся сечением к вершине опоры.

Для крепления проводов ВЛ к опорам применяются изоляторы и крюки, а для крепления к траверсе - изоляторы и штыри. Изоляторы могут быть фарфоровыми или стеклянными штыревого или подвесного (в местах анкерного крепления) исполнения (рис. 1, а-в). Их прочно навертывают на крюки или штыри с помощью специальных полиэтиленовых колпачков или пакли, пропитанной суриком или олифой.

Рисунок 1. а - штыревой 6-10 кВ; б - штыревой 35 кВ; в - подвесной; г, д - стержневые полимерные

Изоляторы воздушных линий изготавливаются из фарфора или закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным достоинством стеклянных изоляторов является то, что при повреждении закаленное стекло рассылается. Это облегчает нахождение поврежденных изоляторов на линии.

По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на линиях напряжением до 1 кВ, 6-10 кВ и, редко, 35 кВ (рис. 1, а, б). Они крепятся к опорам при помощи крюков или штырей.

Подвесные изоляторы (рис. 1, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ - 3-4 изолятора, 110 кВ - 6-8.

Применяются также полимерные изоляторы (рис. 1, г). Они представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины:

К проводам ВЛ предъявляются требования достаточной механической прочности. Они могут быть одно- или многопроволочными. Однопроволочные провода из стали применяются исключительно для линий напряжением до 1000 В; многопроволочные провода из стали, биметалла, алюминия и его сплавов получили преимущественное распространение благодаря повышенной механической прочности и гибкости. Чаще всего на ВЛ напряжением до 6-10 кВ используются алюминиевые многопроволочные провода марки А и стальные оцинкованные провода марки ПС.

Сталеалюминевые провода (рис. 2, в) применяют на ВЛ напряжением выше 1 кВ. Они выпускаются с разным соотношением сечений алюминиевой и стальной частей. Чем меньше это соотношение, тем более высокую механическую прочность имеет провод и поэтому используется на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда). В марке сталеалюминевых проводов указываются сечения алюминиевой и стальной частей, например, АС 95/16.

Рисунок 2. а - общий вид многопроволочного провода; б - сечение алюминиевого провода; в - сечение сталеалюминевого провода

Провода из сплавов алюминия (АН - не термообработанный, АЖ - термообработанный) имеют большую, по сравнению с алюминиевыми, механическую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Провода располагают различными способами. На одноцепных линиях их, как правило, располагают треугольником.

В настоящее время широко используются так называемые самонесущие изолированные провода (СИП) напряжением до 10 кВ. В линии напряжением 380 В провода состоят из несущего неизолированного провода, являющегося нулевым, трех изолированных линейных проводов, одного изолированного провода наружного освещения. Линейные изолированные провода навиты вокруг несущего нулевого провода. Несущий провод является сталеалюминевым, а линейные - алюминиевыми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для подвески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Для ответвлений от линий напряжением до 1000 В к вводам в здания используются изолированные провода марки АПР или АВТ. Они имеют несущий стальной трос и изоляцию, стойкую к атмосферным воздействиям.

Крепление проводов к опорам производится различными способами, в зависимости от места их расположения на изоляторе. На промежуточных опорах провода крепят к штыревым изоляторам зажимами или вязальной проволокой из того же материала, что и провод, причем последний в месте крепления не должен иметь изгибов. Провода, расположенные на головке изолятора, крепятся головной вязкой, на шейке изолятора - боковой вязкой.

На анкерных, угловых и концевых опорах провода напряжением до 1000 В крепят закручиванием проводов так называемой «заглушкой», провода напряжением 6-10 кВ - петлей. На анкерных и угловых опорах, в местах перехода через железные дороги, проезды, трамвайные пути и на пересечениях с различными силовыми линиями и линиями связи применяют двойной подвес проводов.

Соединение проводов производят плашечными зажимами, обжатым овальным соединителем, овальным соединителем, скрученным специальным приспособлением. В некоторых случаях применяют сварку с помощью термитных патронов и специального аппарата. Для однопроволочных стальных проводов можно применять сварку внахлестку с использованием небольших трансформаторов. В пролетах между опорами не допускается иметь более двух соединений проводов, а в пролетах пересечений ВЛ с различными сооружениями соединение проводов не допускается. На опорах соединение должно быть выполнено так, чтобы оно не испытывало механических усилий.

Линейная арматура применяется для крепления проводов к изоляторам и изоляторов к опорам и делится на следующие основные виды: зажимы, сцепная арматура, соединители и др.

Зажимы служат для закрепления проводов и тросов и прикрепления их к гирляндам изоляторов и подразделяются на поддерживающие, подвешиваемые на промежуточных опорах, и натяжные, применяемые на опорах анкерного типа (рис. 3, а, б, в).

Рисунок 3. а - поддерживающий зажим; б - болтовой натяжной зажим; в - прессуемый натяжной зажим; г - поддерживающая гирлянда изоляторов; д - дистанционная распорка; е - овальный соединитель; ж - прессуемый соединитель

Сцепная арматура предназначена для подвески гирлянд на опорах и соединения многоцепных гирлянд друг с другом и включает скобы, серьги, ушки, коромысла. Скоба служит для присоединения гирлянды к траверсе опоры. Поддерживающая гирлянда (рис. 3, г) закрепляется на траверсе промежуточной опоры при помощи серьги 1, которая другой стороной вставляется в шапку верхнего подвесного изолятора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлянды поддерживающего зажима 4.

Соединители применяются для соединения отдельных участков провода. Они бывают овальные и прессуемые. В овальных соединителях провода либо обжимаются, либо скручиваются (рис. 3, е). Прессуемые соединители (рис. 3, ж) применяются для соединения проводов больших сечений. В сталеалюминевых проводах стальная и алюминиевая части опрессовываются раздельно.

Тросы наряду с искровыми промежутками, разрядниками и устройствами заземления служат для защиты линий от грозовых перенапряжений. Их подвешивают над фазными проводами на ВЛ напряжением 35 кВ и выше, в зависимости от района по грозовой деятельности и материала опор, что регламентируется «Правилами устройства электроустановок». Грозозащитные тросы обычно выполняют из стали, но при использовании их в качестве высокочастотных каналов связи - из стали и алюминия. На линиях 35-110 кВ крепление троса к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Для защиты от грозовых перенапряжений участков ВЛ с пониженным по сравнению с остальной линией уровнем изоляции применяют трубчатые разрядники.

На ВЛ заземляются все металлические и железобетонные опоры, на которых подвешены грозозащитные тросы или установлены другие средства грозозащиты (разрядники, искровые промежутки) линий напряжением 6-35 кВ. На линиях до 1 кВ с глухозаземленной нейтралью крюки и штыри фазных проводов, устанавливаемые на железобетонных опорах, а также арматура этих опор должны быть присоединены к нулевому проводу.

Энциклопедичный YouTube

    1 / 5

    ✪ Как работает ЛЭП. Передача энергии на большие расстояния. Анимационный обучающий ролик. / Урок 3

    ✪ Урок 261. Потери энергии в ЛЭП. Условие согласования источника тока с нагрузкой

    ✪ Методы монтажа опор воздушных линий электропередачи (лекция)

    ✪ ✅Как зарядить телефон под высоковольтной ЛЭП наведёнными токами

    ✪ Пляска проводов воздушной линии электропередачи 110 кВ

    Субтитры

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) - устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам , путепроводам).

Состав ВЛ

  • Траверсы
  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи , ёмкостного отбора мощности и др.)
  • Элементы маркировки высоковольтных проводов и опор ЛЭП для обеспечения безопасности полётов воздушных судов . Опоры маркируются сочетанием красок определённых цветов, провода - авиационными шарами для обозначения в дневное время. Для обозначения в дневное и ночное время суток применяются огни светового ограждения.

Документы, регулирующие ВЛ

Классификация ВЛ

По роду тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на ёмкостную и индуктивную составляющие. В СССР было построено несколько линий электропередачи постоянного тока:

  • Высоковольтная линия постоянного тока Москва-Кашира - Проект «Эльба» ,
  • Высоковольтная линия постоянного тока Волгоград-Донбасс ,
  • Высоковольтная линия постоянного тока Экибастуз-Центр , и т. д.

Широкого распространения такие линии не получили.

По назначению

  • Сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем).
  • Магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций , а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами).
  • Распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям.

По напряжению

  • ВЛ до 1000 В (ВЛ низшего класса напряжений)
  • ВЛ выше 1000 В
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 35-330 кВ (ВЛ высокого класса напряжений)
    • ВЛ 500-750 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ выше 750 кВ (ВЛ ультравысокого класса напряжений)

Эти группы существенно различаются, в основном - требованиями в части расчётных условий и конструкций.

В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные междуфазные напряжения : 380 ; (6) , 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ . Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 , 3 и 150 кВ .

Самой высоковольтной ЛЭП в мире является линия Экибастуз-Кокчетав , номинальное напряжение - 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением - 500 кВ.

Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС - Финляндия) и 800 кВ.

В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока).

По режиму работы нейтралей в электроустановках

  • Трёхфазные сети с незаземлёнными (изолированными ) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с больши́м сопротивлением). В СНГ такой режим нейтрали используется в сетях напряжением 3-35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с резонансно-заземлёнными (компенсированными ) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В СНГ используется в сетях напряжением 3-35 кВ с большими токами однофазных замыканий на землю.
  • Трёхфазные сети с эффективно-заземлёнными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220 кВ, в которых применяются трансформаторы (автотрансформаторы требуют обязательного глухого заземления нейтрали).
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1 кВ, а также сети напряжением 220 кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны).
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов).
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов).

Основные элементы ВЛ

  • Трасса - положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) - отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры.
  • Производственный пикетаж - установка пикетных и центровых знаков на трассе в соответствии с ведомостью расстановки опор.
  • Фундамент опоры - конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента - грунт нижней части котлована , воспринимающий нагрузку.
  • Пролёт (длина пролёта) - расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт - пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии - угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса - вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода - вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля ) - отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Монтаж воздушных линий электропередачи

Монтаж линий электропередачи осуществляется Методом монтажа «под тяжением» . Это особенно актуально в случае сложного рельефа местности. При подборе оборудования для монтажа ЛЭП необходимо учитывать количество проводов в фазе, их диаметр и максимальное расстояние между опорами ЛЭП.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) - линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

Классификация

Кабельные линии классифицируют аналогично воздушным линиям. Кроме того, кабельные линии делят:

  • по условиям прохождения:
    • подземные;
    • по сооружениям;
    • подводные.
  • по типу изоляции:
    • жидкостная (пропитанная кабельным нефтяным маслом);
    • твёрдая:
      • бумажно-масляная;
      • поливинилхлоридная (ПВХ);
      • резино-бумажная (RIP);
      • этилен-пропиленовая резина (EPR).

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи [когда? ] .

Кабельные сооружения

К кабельным сооружениям относятся:

  • Кабельный тоннель - закрытое сооружение (коридор) с расположенными в нём опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонт и осмотр кабельных линий.
  • Кабельный канал - непроходное сооружение, закрытое и частично или полностью заглублённое в грунт, пол, перекрытие и т. п. и предназначенное для размещения в нём кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта - вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабжённое скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съёмной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж - часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол - полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съёмными плитами (на всей или части площади).
  • Кабельный блок - кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера - подземное кабельное сооружение, закрываемое глухой съёмной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в неё, называется кабельным колодцем .
  • Кабельная эстакада - надземное или наземное открытое горизонтальное или наклонное протяжённое кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея - надземное или наземное закрытое (полностью или частично, например, без боковых стен) горизонтальное или наклонное протяжённое проходное кабельное сооружение.

Пожарная безопасность

Температура внутри кабельных каналов (тоннелей) в летнее время должна быть не более чем на 10 °C выше температуры наружного воздуха.

При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прогревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения .

Кабель состоит из множества конструктивных элементов, для изготовления которых используют широкий спектр горючих материалов, в число которых входят материалы, имеющие низкую температуру воспламенения, материалы склонные к тлению. Также в конструкцию кабеля и кабельных конструкций входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500-600 ˚C, которая превышает температуру воспламенения (250-350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения .

Длительное время в кабельных помещениях применялись установки пенного тушения . Однако опыт эксплуатации выявил ряд недостатков:

  • ограниченный сpoк хранения пенообразователя и недопустимость хранения их водных растворов;
  • неустойчивость в работе;
  • сложность наладки;
  • необходимость специального ухода за устройством дозировки пенообразователя;
  • быстрое разрушение пены при высокой (около 800 °C) температуре среды при пожаре.

Исследования показали, что распылённая вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции .

Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин .

Высокотемпературные сверхпроводники

ВТСП-провод

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока , поэтому при передаче её на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора , что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления .

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Коронный разряд возникает, когда напряжённость электрического поля E {\displaystyle E} у поверхности провода превысит пороговую величину E k {\displaystyle E_{k}} , которую можно вычислить по эмпирической формуле Пика:
E k = 30 , 3 β (1 + 0,298 r β) {\displaystyle E_{k}=30{,}3\beta \left({1+{\frac {0{,}298}{\sqrt {r\beta }}}}\right)} кВ/см,
где r {\displaystyle r} - радиус провода в метрах, β {\displaystyle \beta } - отношение плотности воздуха к нормальной .

Напряжённость электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) - применяя расщепление фаз, то есть используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U (U − U кр) {\displaystyle U(U-U_{\text{кр}})} .

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии - cos φ . Активная мощность - часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность - это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой (индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности, тем больше потери активной.

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь - радиоизлучение . Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц ( λ = c / ν = {\displaystyle \lambda =c/\nu =} 6000 км, длина четвертьволнового вибратора λ / 4 = {\displaystyle \lambda /4=} 1500 км), провод работает как излучающая антенна .

Натуральная мощность и пропускная способность ЛЭП

Натуральная мощность

ЛЭП обладает индуктивностью и ёмкостью. Емкостная мощность пропорциональна квадрату напряжения, и не зависит от мощности, передаваемой по линии. Индуктивная же мощность линии пропорциональна квадрату тока, а значит и мощности линии. При определённой нагрузке индуктивная и емкостная мощности линии становятся равными, и они компенсируют друг друга. Линия становится «идеальной», потребляющей столько реактивной мощности, сколько её вырабатывает. Такая мощность называется натуральной мощностью. Она определяется только погонными индуктивностью и емкостью, и не зависит от длины линии. По величине натуральной мощности можно ориентировочно судить о пропускной способности линии электропередачи. При передаче такой мощности на линии имеет место минимальные потери мощности, режим её работы является оптимальным. При расщеплении фаз, за счет уменьшения индуктивного сопротивления и увеличения емкостной проводимости линии, натуральная мощность увеличивается. При увеличении расстояния между проводами натуральная мощность уменьшается, и наоборот, для повышения натуральной мощности необходимо уменьшать расстояние между проводами. Наибольшей натуральной мощностью обладают кабельные линии, имеющие большую емкостную проводимость и малую индуктивность.

Пропускная способность

Под пропускной способностью электропередачи понимается наибольшая активная мощность трех фаз электропередачи, которую можно передать в длительном установившемся режиме с учетом режимно-технических ограничений. Наибольшая передаваемая активная мощность электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приемной части электроэнергетической системы, и допустимой мощностью по нагреву проводов линии с допустимым током. Из практики эксплуатации электроэнергетических систем следует, что пропускная способность электропередач 500 кВ и выше обычно определяется фактором статической устойчивости, для электропередач 220-330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву, 110 кВ и ниже - только по нагреву.

Характеристика пропускной способности воздушных линий электропередачи

Содержание:

Один из столпов современной цивилизации – это электроснабжение. Ключевую роль в нем выполняют линии электропередачи – ЛЭП. Независимо от удаленности генерирующих мощностей от конечных потребителей, нужны протяженные проводники, которые их соединяют. Далее расскажем более детально о том, что из себя представляют эти проводники, именуемые как ЛЭП.

Какими бывают воздушные ЛЭП

Провода, прикрепленные к опорам, – это и есть воздушные ЛЭП. Сегодня освоены два способа передачи электроэнергии на большие расстояния. Они основаны на переменном и постоянном напряжениях. Передача электроэнергии при постоянном напряжении пока еще менее распространена в сравнении с переменным напряжением. Это объясняется тем, что постоянный ток сам по себе не генерируется, а получается из переменного тока.

По этой причине необходимы дополнительные электрические машины. А они стали появляться относительно недавно, поскольку в их основе используются мощные полупроводниковые приборы. Такие полупроводники появились лишь 20–30 лет тому назад, то есть примерно в 90-е годы ХХ века. Следовательно, до этого времени уже были построены в большом количестве ЛЭП переменного тока. Отличия линий электропередачи показаны далее на схематическом изображении.

Наибольшие потери вызывает активное сопротивление материала проводов. При этом не имеет значения, какой ток – постоянный или переменный. Для их преодоления напряжение в начале передачи повышается как можно больше. Уже преодолен уровень в один миллион вольт. Генератор Г питает ЛЭП переменного тока через трансформатор Т1. А в конце передачи напряжение понижается. ЛЭП питает нагрузку Н через трансформатор Т2. Трансформатор является самым простым и надежным инструментом преобразования напряжений.

У читателя, мало знакомого с электроснабжением, скорее всего, появится вопрос о смысле передачи электроэнергии на постоянном токе. А причины чисто экономические – передача электроэнергии на постоянном токе именно в самой ЛЭП дает большую экономию:

  1. Генератор вырабатывает трехфазное напряжение. Следовательно, три провода для электроснабжения на переменном токе нужны всегда. А на постоянном токе всю мощность трех фаз можно передать по двум проводам. А при использовании земли как проводника – по одному проводу. Следовательно, экономия лишь на материалах получается трехкратной в пользу ЛЭП на постоянном токе.
  2. Электрические сети переменного тока при объединении в одну общую систему должны иметь одинаковую фазировку (синхронизацию). Это значит, что мгновенное значение напряжения в соединяемых электросетях должно быть одинаковым. Иначе между соединяемыми фазами электросетей будет разность потенциалов. Как следствие соединения без фазировки – авария, сопоставимая с коротким замыканием. Для электросетей постоянного тока вообще не характерна. Для них имеет значение лишь действующее напряжение на момент соединения.
  3. Для электрических цепей, работающих на переменном токе, характерен импеданс, который связан с индуктивностью и емкостью. Импеданс имеется также и у ЛЭП переменного тока. Чем протяженнее линия, тем больше импеданс и потери, с ним связанные. Для электрических цепей постоянного тока понятия импеданса не существует, как и потерь, связанных с изменением направления движения электрического тока.
  4. Как уже упоминалось в п. 2, для стабильности в энергосистеме нужна синхронизация генераторов. Но чем больше система, работающая на переменном токе, и, соответственно, число электрогенераторов, тем сложнее их синхронизировать. А для энергосистем постоянного тока любое число генераторов будет нормально работать.

Из-за того, что сегодня нет достаточно мощных полупроводниковых или иных систем для преобразования напряжения, достаточно эффективного и надежного, большинство ЛЭП по-прежнему работает на переменном токе. По этой причине далее остановимся только на них.

Еще один пункт в классификации линий электропередачи – это их назначение. В связи с этим линии разделяются на

  • сверхдальние,
  • магистральные,
  • распределительные.

Их конструкция принципиально отличается из-за разных величин напряжения. Так, в сверхдальних ЛЭП, являющихся системообразующими, применяются самые высокие напряжения, которые только существуют на нынешнем этапе развития техники. Величина в 500 кВ для них является минимальной. Это объясняется значительным удалением друг от друга мощных электростанций, каждая из которых – это основа отдельной энергосистемы.

Внутри нее существует своя распределительная сеть, задача которой – обеспечение больших групп конечных потребителей. Они присоединены к распределительным подстанциям с напряжением 220 или 330 кВ на высокой стороне. Эти подстанции являются конечными потребителями для магистральных ЛЭП. Поскольку энергетический поток уже вплотную приблизился к поселениям, напряжение необходимо уменьшить.

Распределение электроэнергии выполняют ЛЭП, напряжение которых 20 и 35 кВ для жилого сектора, а также 110 и 150 кВ – для мощных промышленных объектов. Следующий пункт классификации линий электропередачи – по классу напряжения. По этому признаку ЛЭП можно опознать визуально. Для каждого класса напряжения характерны соответствующие изоляторы. Их конструкция – это своего рода удостоверение линии электропередачи. Изоляторы изготавливаются увеличением числа керамических чашек соответственно увеличению напряжения. А его классы в киловольтах (включая напряжения между фазами, принятые для стран СНГ) такие:

  • 1 (380 В);
  • 35 (6, 10, 20);
  • 110…220;
  • 330…750 (500);
  • 750 (1150).

Помимо изоляторов, отличительными признаками являются провода. С увеличением напряжения все больше проявляется эффект электрического коронного разряда. Это явление отбирает энергию и уменьшает эффективность электроснабжения. Поэтому для ослабления коронного разряда с увеличением напряжения, начиная с 220 кВ, используются параллельные провода – по одному на каждые примерно 100 кВ. Некоторые из воздушных линий (ВЛ) разных классов напряжения показаны далее на изображениях:

Опоры ЛЭП и другие заметные элементы

Для того чтобы провод надежно удерживался, применяются опоры. В простейшем случае это деревянные столбы. Но такая конструкция применима лишь к линиям до 35 кВ. А с увеличением ценности древесины в этом классе напряжений все больше используются опоры из железобетона. По мере увеличения напряжения провода необходимо поднимать выше, а расстояние между фазами делать больше. В сравнении опоры выглядят так:

В общем, опоры – это отдельная тема, которая довольно-таки обширна. По этой причине в детали темы опор линий электропередачи здесь углубляться не будем. Но чтобы кратко и емко показать читателю ее основу, продемонстрируем изображение:

В заключение информации о воздушных ЛЭП упомянем те дополнительные элементы, которые встречаются на опорах и хорошо заметны. Это

  • системы защиты от молнии,
  • а также реакторы.

Кроме перечисленных элементов, в линиях электропередачи применяется еще несколько. Но оставим их за рамками статьи и перейдем к кабелям.

Кабельные линии

Воздух – это изолятор. На этом его свойстве основаны воздушные линии. Но существуют и другие более эффективные материалы-изоляторы. Их применение позволяет намного уменьшить расстояния между фазными проводниками. Но цена такого кабеля получается настолько велика, что не может быть и речи о его использовании вместо воздушных ЛЭП. По этой причине кабели прокладывают там, где есть трудности с воздушными линиями.

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:

  • провода;
  • защитные тросы;
  • опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
  • изоляторы, изолирующие провода от тела опоры;
  • линейная арматура.

За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоценные, как правило 2-цепные.

Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.

Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной

Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.

Рис. 2. : а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»

Таблица 1. Конструктивные параметры воздушных линий

Номинальное

напряжение ВЛ, кВ

Расстояние между

фазными проводами, м

Длина

пролета, м

Высота Габарит
Менее 1 0,5 40 – 50 8 – 9 6 – 7
6 – 10 1,0 50 – 80 10 6 – 7
35 3 150 – 200 12 6 – 7
110 4 – 5 170 – 250 13 – 14 6 – 7
150 5,5 200 – 280 15 – 16 7 – 8
220 7 250 – 350 25 – 30 7 – 8
330 9 300 – 400 25 – 30 7,5 – 8
500 10 – 12 350 – 450 25 – 30 8
750 14 – 16 450 – 750 30 – 41 10 – 12
1150 12 – 19 33 – 54 14,5 – 17,5

Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.

Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.

Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи : 1, 2, 3 – фазные провода

Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).

Рис. 4.

Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.

Рис. 5.

Расстояние между анкерными опорами называют анкерным пролетом воздушной линии электропередачи (рис. 6). Горизонтальное расстояние между точками крепления провода на соседних опорах называется длиной пролета L . Эскиз пролета ВЛ показан на рис. 7. Длину пролета выбирают в основном по экономическим соображениям, кроме переходных пролетов, учитывая, как высоту опор, так и провисание проводов и тросов, а также количество опор и изоляторов по всей длине ВЛ.

Рис. 6. : 1 – поддерживающая гирлянда изоляторов; 2 – натяжная гирлянда; 3 – промежуточная опора; 4 – анкерная опора

Наименьшее расстояние по вертикали от земли до провода при его наибольшем провисании называют габаритом линии до земли – h . Габарит линии должен выдерживаться для всех номинальных напряжений с учетом опасности перекрытия воздушного промежутка между фазными проводами и наиболее высокой точкой местности. Также необходимо учитывать экологические аспекты воздействия высоких напряженностей электромагнитного поля на живые организмы и растения.

Наибольшее отклонение фазного провода f п или грозозащитного троса f т от горизонтали под действием равномерно распределенной нагрузки от собственной массы, массы гололеда и давления ветра называют стрелой провеса. Для предотвращения схлёстывания проводов стрела провеса троса выполняется меньше стрелы провеса провода на 0,5 – 1,5 м.

Конструктивные элементы ВЛ, такие как фазные провода, тросы, гирлянды изоляторов обладают значительной массой поэтому силы действующие на одну опору достигает сотен тысяч ньютон (Н). Силы тяжения на провод от веса провода, веса натяжных гирлянд изоляторов и гололедных образований направлены по нормали вниз, а силы, обусловленные ветровым напором, по нормали в сторону от вектора ветрового потока, как это показано на рис. 7.

Рис. 7.

С целью уменьшения индуктивного сопротивления и увеличения пропускной способности ВЛ дальних передач используют различные варианты компактных ЛЭП, характерной особенностью которых является уменьшенное расстояние между фазными проводами. Компактные ЛЭП имеют более узкий пространственный коридор, меньший уровень напряженности электрического поля на уровне земли и позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и линии с нетрадиционной конфигурацией расщепленных фаз).

2. Кабельная линия электропередачи

Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.

В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.

Рис. 8.

По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.

Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.

Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN .

По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы.

Кабели высокого напряжения выполняются маслонаполненными или газонаполненными. В этих кабелях бумажная изоляция заполняется маслом или газом под давлением.

Защита изоляции от высыхания и попадания воздуха и влаги обеспечивается наложением на изоляцию герметичной оболочки. Защита кабеля от возможных механических повреждений обеспечивается броней. Для защиты от агрессивности внешней среды служит наружный защитный покров.

При изучении кабельных линий целесообразно отметить сверхпроводящие кабели для линий электропередачи в основу конструкции которых положено явление сверхпроводимости. В упрощенном виде явление сверхпроводимости в металлах можно представить следующим образом. Между электронами как между одноименно заряженными частицами действуют кулоновские силы отталкивания. Однако при сверхнизких температурах для сверхпроводящих материалов (а это 27 чистых металлов и большое количество специальных сплавов и соединений) характер взаимодействия электронов между собой и с атомной решеткой существенно видоизменяется. В результате становится возможным притягивание электронов и образование так называемых электронных (куперовских) пар. Возникновение этих пар, их увеличение, образование «конденсата» электронных пар и объясняет появление сверхпроводимости. С повышением температуры часть электронов термически возбуждается и переходит в одиночное состояние. При некоторой так называемой критической температуре все электроны становятся нормальными и состояние сверхпроводимости исчезает. То же происходит и при повышении напряженности магнитного по ля . Критические температуры сверхпроводящих сплавов и соединений, используемых в технике, составляют 10 - 18 К, т.е. от –263 до –255°С.

Первые проекты, экспериментальные модели и опытные образцы таких кабелей в гибких гофрированных криостатирующих оболочках были реализованы лишь в 70-80-е годы XX века. В качестве сверхпроводника использовались ленты на основе интерметаллического соединения ниобия с оловом, охлаждаемые жидким гелием.

В 1986 г. было открыто явление высокотемпературной сверхпроводимости , и уже в начале 1987 г. были получены проводники такого рода, представляющие собой керамические материалы, критическая температура которых была повышена до 90 К. Примерный состав первого высокотемпературного сверхпроводника YBa 2 Cu 3 O 7–d (d < 0,2). Такой сверхпроводник представляет собой неупорядоченную систему мелких кристаллов, имеющих размер от 1 до 10 мкм, находящихся в слабом электрическом контакте друг с другом. К концу XX века были начаты и к этому времени достаточно продвинуты работы по созданию сверхпроводящих кабелей на основе высокотемпературных сверхпроводников. Такие кабели принципиально отличаются от своих предшественников. Жидкий азот, применяемый для охлаждения, на несколько порядков дешевле гелия, а его запасы практически безграничны. Очень важным является то, что жидкий азот при рабочих давлениях 0,8 - 1 МПа является прекрасным диэлектриком, превосходящим по своим свойствам пропиточные составы, используемые в традиционных кабелях.

Технико-экономические исследования показывают, что высокотемпературные сверхпроводящие кабели будут более эффективными по сравнению с другими видами электропередачи уже при передаваемой мощности более 0,4 - 0,6 ГВ·А в зависимости от реального объекта применения. Высокотемпературные сверхпроводящие кабели предполагается в будущем использовать в энергетике в качестве токопроводов на электростанциях мощностью свыше 0,5 ГВт, а также глубоких вводов в мегаполисы и крупные энергоемкие комплексы. При этом необходимо реально оценивать экономические аспекты и полный комплекс работ по обеспечению надежности таких кабелей в эксплуатации.

Однако следует отметить, что при строительстве новых и реконструкции старых КЛ необходимо руководствоваться положениями ПАО «Россети», согласно которым на КЛ запрещено применять:

  • силовые кабели, не отвечающие действующим требованиям по пожарной безопасности и выделяющие большие концентрации токсичных продуктов при горении;
  • кабели с бумажно-масляной изоляцией и маслонаполненные;
  • кабели, изготовленные по технологии силанольной сшивки (силанольносшиваемые композиции содержат привитые органофункциональные силановые группы, и сшивание молекулярной цепи полиэтилена (ПЭ), приводящее к образованию пространственной структуры, в этом случае происходит за счет связи кремний-кислород-кремний (Si-O-Si), а не углерод-углерод (С-С), как это имеет место при пероксидном сшивании).

Кабельную продукцию в зависимости от конструкций подразделяют на кабели , провода и шнуры .

Кабель – полностью готовое к применению заводское электротехническое изделие, состоящее из одной или более изолированных токопроводящих жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в состав которого может входить броня. Силовые кабели в зависимости от класса напряжения имеют от одной до пяти алюминиевых или медных жил сечением от 1,5 до 2000 мм 2 , из них сечением до 16 мм 2 – однопроволочные, свыше – многопроволочные.

Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.

Шнур – две или более изолированных, или особо гибких жил сечением до 1,5 мм 2 , скрученных или уложенных параллельно, поверх которых в зависимости от условий прокладки и эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия.